1.  安装CUDA Toolkit 11.8
从MZ小师妹的摸索过程来看,其他版本的会有bug,12.0的版本太高,11.5的太低(感谢小师妹让我少走弯路)
参考网址:CUDA Toolkit 11.8 Downloads | NVIDIA Developer

在命令行输入命令:
 

wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run
sudo sh cuda_11.8.0_520.61.05_linux.run

2. 确定自己用的是cuda 11.8:

如果不是,在自己的~/.bashrc文件中添加路径:

export LD_LIBRARY_PATH=/usr/local/cuda-11.8/lib64
export PATH=$PATH:/usr/local/cuda-11.8/bin

3. 安装pycuda:
conda install -c conda-forge pycuda

4. 测试pycuda:
来源 PyCUDA - 上海交大超算平台用户手册 Documentation

import pycuda.driver as drv
import pycuda.autoinit
from pycuda.compiler import SourceModule
import numpy

# 定义核函数
mod = SourceModule(
    """
    __global__ void add_vectors(float *a, float *b, float *c, int n)
    {
        int idx = threadIdx.x + blockIdx.x * blockDim.x;
        if (idx < n)
        {
            c[idx] = a[idx] + b[idx];
        }
    }
"""
)

# 定义向量大小
n = 10000

# 生成随机向量数据
a = numpy.random.randn(n).astype(numpy.float32)
b = numpy.random.randn(n).astype(numpy.float32)

# 分配输出内存空间
c = numpy.zeros_like(a)

# 将输入输出数据复制到 GPU
a_gpu = drv.mem_alloc(a.nbytes)
b_gpu = drv.mem_alloc(b.nbytes)
c_gpu = drv.mem_alloc(c.nbytes)

drv.memcpy_htod(a_gpu, a)
drv.memcpy_htod(b_gpu, b)

# 定义块和网格大小
blocksize = 256
gridsize = (n + blocksize - 1) // blocksize

# 执行核函数
add_vectors = mod.get_function("add_vectors")
add_vectors(
    a_gpu, b_gpu, c_gpu, numpy.int32(n), block=(blocksize, 1, 1), grid=(gridsize, 1)
)

# 将结果从 GPU 复制回 CPU
drv.memcpy_dtoh(c, c_gpu)

# 检查计算结果是否正确
assert numpy.allclose(c, a + b), "result not correct"

# 输出结果
print("a:", a)
print("b:", b)
print("c:", c)

 

Logo

欢迎来到由智源人工智能研究院发起的Triton中文社区,这里是一个汇聚了AI开发者、数据科学家、机器学习爱好者以及业界专家的活力平台。我们致力于成为业内领先的Triton技术交流与应用分享的殿堂,为推动人工智能技术的普及与深化应用贡献力量。

更多推荐